RELATIVISTIC QUANTUM MECHANICS

Wednesday 06-05-2015, 18.30-21.30

Write your name and student number on all sheets. The total number of points is 90. Use conventions with $\hbar = c = 1$.

PROBLEM 1: LADDER OPERATORS (6+6+6=18 points)

- 1.1 Give the (anti-)commutation relations between $a_{\vec{p}}$ and $a_{\vec{q}}$, between $a_{\vec{p}}$ and $a_{\vec{q}}^{\dagger}$, and between $a_{\vec{p}}^{\dagger}$ and $a_{\vec{q}}^{\dagger}$ (all of which are bosonic operators).
- 1.2 Give the (anti-)commutation relations between $b_{\vec{p}}$ and $b_{\vec{q}}$, between $b_{\vec{p}}$ and $b_{\vec{q}}^{\dagger}$, and between $b_{\vec{p}}^{\dagger}$ and $b_{\vec{q}}^{\dagger}$ (all of which are fermionic operators).
- 1.3 Give the (anti-)commutation relations between $a_{\vec{p}}$ and $b_{\vec{q}}$, between $a_{\vec{p}}$ and $b_{\vec{q}}^{\dagger}$, and between $a_{\vec{p}}^{\dagger}$ and $b_{\vec{q}}^{\dagger}$.

PROBLEM 2: HAMILTONIAN FORMALISM (6+6+6=18 points)

The Lagrangian for a relativistic massive spinor field ψ is

$$\mathcal{L} = \bar{\psi}(i\partial \!\!\!/ - m)\psi. \tag{1}$$

- 2.1 What is the Euler-Lagrange equation for ψ ?
- 2.2 What is the momentum conjugate to ψ , and what is the corresponding Hamiltonian density?
- 2.3 What are the Hamiltonian equations for this theory? Indicate the relations to the result of question 2.1.

PROBLEM 3: CAUSALITY (6+6+6=18 points)

- 3.1 Explain the notion of causality in a classical theory in simple terms.
- 3.2 Does causality imply that the product of two quantum operators that are separated via a space-like trajectory vanishes? Does the Compton wavelength play any role here?

3.3 Does causality imply that the (anti-)commutator of two quantum operators that are separated via a space-like trajectory vanishes? Does the Compton wavelength play any role here?

PROBLEM 4: HAMILTIONIAN OPERATOR (6+18+6+6=36 points)

The Hamiltonian operator for a relativistic massive scalar field ϕ is given by

$$H = \int d^3x \left(\frac{1}{2}\dot{\phi}^2 + \frac{1}{2}(\vec{\nabla}\phi)^2 + \frac{1}{2}m^2\phi^2 \right).$$

- 4.1 What is the expression for the field ϕ and its conjugate momentum π in terms of ladder operators $a_{\vec{p}}$ and $a_{\vec{p}}^{\dagger}$?
- 4.2 Derive the expression for the Hamiltonian operator in terms of ladder operators. Interpret the physical significance of your resulting expression.
- 4.3 Calculate the action of H on $a_{\vec{p}}^{\dagger}|0>$, where |0> is the groundstate of H with eigenvalue 0.
- 4.4 Calculate the action of H on $a_{\vec{p}}^{\dagger}|E_0>$, where $|E_0>$ is an eigenstate of H with eigenvalue E_0 .